• Bulk data transfer in data intensive applications

- Cooperation between large number of data flows
- High computation overhead, large data copy, bursting disk-network IO
- TCP is ineffective

• Easy to deploy: user space and end-toend approach without router feedback

- High performance, fast data transfer
- Intra-protocol fairness without RTT bias
- TCP friendliness

• UDP-based, application level protocol

- Protocol design to support efficient packet processing
- Configurable congestion control
- Efficient native congestion control algorithm
- Optimized implementation

• Fast.

• Fair and friendly.

- Easy to use.
- Highly configurable.
- Firewall friendly.

SC03: 10 UDT flows and 200 TCP flows from Amsterdam to Phoenix – fair and friendly

- SC06: transfer SDSS data disk-disk between Chicago and Tampa at 8Gb/s using Sector & UDT. BWC winner.
- SC08: Large area cloud computing with Sector/Sphere. UDT supports 120*120 flows in the system.
- Open source BSD license
- User level C++ library
- Support Linux, BSD, UNIX, and Windows
- API very similar to BSD Socket
- 20,000 downloads so far, used in numerous commercial and research products.

Background

Inexpensive storage and high bandwidth optical networks have facilitated the rapid increase of distributed data intensive applications, especially in the field of E-Science.

TCP's problem: poor bandwidth utilization in high BDP networks, RTT bias, and prone to queuing and reverse traffic.

Figure on the left: two earth observation data streams from Chicago and Amsterdam were joined and analyzed in real time during iGrid 2002.

Symbols and Abbreviations

SYN: Synchronization Time. A UDT constant time that is 0.01 seconds.

RTT: Round Trip Time

MSS: Maximum Segment Size (in bytes)

R: Packet Sending Rate (in packets/s) W: Congestion Window Size (in packets)

B: Estimated Bandwidth (in bits/s)

B (Mb/s)

 $B \le 0.1$

 $1 < B \le 10$

 $10 < B \le 100$

* MSS = 1500 bytes

 $100 < B \le 1000$

 $1000 < B \le 10000$

Increment

(packets)

0.00067

0.001

ACK: Acknowledgement

NAK: Negative Acknowledgement (loss report)

AS: Packet Arrival Speed (in packets/s)

UDT Architecture

UDT is an application level transport protocol over UDP. It is duplex. Each UDT entity has both a sender and a receiver. Two UDT entities communicate through a pair of UDP ports.

UDT uses packet-based sequencing and timer-based selective acknowledgement. ACK is sent every SYN and NAK is sent once a packet loss event is detected.

UDT uses a hybrid rate-window congestion control. Rate control is triggered every SYN, whereas window control is triggered every ACK.

Rate Control

Rate control tunes the packet sending rate. No more than one packet can be sent during each packet sending period.

Additive Increase: Every SYN, if there is no NAK, but there are ACKs received $0.1 < B \le 1$ the increment of next SYN is given by:

$$inc = \max(10^{\lceil \log_{10} B \rceil - 9}, 1/1500) \times 1500/MSS$$

Multiplicative Decrease: For a random chosen NAK

R = R * 8/9

Window Control

Window control limits the number of unacknowledged packets. It is done at the receiver side. Once an ACK is to be sent, update the window size to:

$$W = W * a + AS * (RTT + SYN) * (1 - a)$$
 0< a < 1

The minimum value between W and the receiver's available buffer size (flow control) is sent to the sender in ACK.

Bandwidth Estimation

UDT uses receiver based packet pairs (RBPP) to estimate link capacity L. Suppose the current sending rate is C, then

if C is less than the last decreased sending

$$B = L - C$$

else

 $B = min \{L-C, L/9\}$

De-Synchronization

Demonstration

250Mb/s in the UDT group.

A randomization method is used to remove the negative impact of loss synchronization. It also avoids drastic changes in the sending rate.

Figure on the left: 50 TCP flows and 4 UDT flows

share a 1Gb/s, 180ms RTT link. The TCP window size

5Mb/s. The size of each green square represents the

Implementation

UDP multiplexer allows multiple UDT connections to share single port.

Efficient processing on protocol data structures, including memory copy avoidance, self-clocking, and fast scheduling of UDT connections.

Supports multi-core processing, buffer autosizing, rendezvous connection setup, etc.

Reference

UDT web site: http://udt.sourceforge.net

Internet Draft: Yunhong Gu, Robert L. Grossman, UDT: A high performance data transfer protocol, draft-gg-udt-02.txt

Paper: Yunhong Gu and Robert L. Grossman, UDT: UDP-based Data Transfer for High-Speed Wide Area Networks, Computer Networks (Elsevier). Volume 51, Issue 7. May 2007

Jain's fairness index of UDT and TCP

Stability Index of UDT and TCP: smaller value is more stable

UDT's RTT fairness: values are the throughput ratio of two flows, one has a fixed *RTT* of 1ms, the other ranges its *RTT* from 1ms to 1000ms.

UDT's TCP friendliness index: values are mean throughout of 10 TCP flows with 5 other UDT flows vs. with 5 other TCP flows.

UDT's efficiency in real networks

UDT fairness in real networks: 3 UDT flows in real networks with different RTTs (0.04ms, 16ms, 110ms) and bottlenecks (OC12, 1Gb/s, 1Gb/s)