
Rate Control
Rate control tunes the packet sending rate. No more than one packet can be
sent during each packet sending period.

Additive Increase: Every SYN, if there is no NAK, but there are ACKs received,
the increment of next SYN is given by:

Multiplicative Decrease: For a random chosen NAK

 R = R * 8/9

  MSSinc B /1500)1500/1,10max(9log10 ×= −

UDT: UDP based Data Transfer Protocol
http://udt.sourceforge.net UICNational Center for Data Mining

University of Illinois at Chicago

• Bulk data transfer in data intensive
applications

• Cooperation between large number of
data flows

• High computation overhead, large data
copy, bursting disk-network IO

• TCP is ineffectiveT h
e

P
ro

bl
e m

s

• Easy to deploy: user space and end-to-
end approach without router feedback

• High performance, fast data transfer

• Intra-protocol fairness without RTT bias

• TCP friendliness

Th
e

C
ha

l le
n g

e s

• UDP-based, application level protocol

• Protocol design to support efficient
packet processing

• Configurable congestion control

• Efficient native congestion control
algorithm

• Optimized implementationTh
e

S
ol

u t
i o

ns

• Fast.

• Fair and friendly.

• Easy to use.

• Highly configurable.

• Firewall friendly.

Th
e

Fe
at

ur
e s

• SC03: 10 UDT flows and 200 TCP
flows from Amsterdam to Phoenix – fair
and friendly

• SC06: transfer SDSS data disk-disk
between Chicago and Tampa at 8Gb/s
using Sector & UDT. BWC winner.

• SC08: Large area cloud computing with
Sector/Sphere. UDT supports 120*120
flows in the system.

T h
e

R
e s

ul
ts

• Open source BSD license

• User level C++ library

• Support Linux, BSD, UNIX, and
Windows

• API very similar to BSD Socket

• 20,000 downloads so far, used in
numerous commercial and research
products.

Th
e

S
of

tw
ar

e

101000 < B ≤10000
……

1100 < B ≤ 1000
0.110 < B ≤ 100
0.011 < B ≤ 10
0.0010.1 < B ≤ 1
0.00067B ≤ 0.1

Increment
(packets)

B (Mb/s)

Background
Inexpensive storage and high bandwidth optical networks have facilitated the rapid
increase of distributed data intensive applications, especially in the field of E-
Science.

TCP’s problem: poor bandwidth utilization in high BDP networks, RTT bias, and
prone to queuing and reverse traffic.

Figure on the left: two earth observation data streams from Chicago and Amsterdam
were joined and analyzed in real time during iGrid 2002.

Window Control
Window control limits the number of unacknowledged
packets. It is done at the receiver side. Once an ACK is to
be sent, update the window size to:

 W = W * a + AS * (RTT + SYN) * (1 - a) 0< a <1

The minimum value between W and the receiver’s
available buffer size (flow control) is sent to the sender in
ACK.

Demonstration
Figure on the left: 50 TCP flows and 4 UDT flows
share a 1Gb/s, 180ms RTT link. The TCP window size
is configured so that the maximum TCP throughout is
5Mb/s. The size of each green square represents the
current transfer speed of that flow. The size of each
blue square in the TCP group is 5Mb/s, and it is
250Mb/s in the UDT group.

Implementation
UDP multiplexer allows multiple UDT
connections to share single port.

Efficient processing on protocol data structures,
including memory copy avoidance, self-clocking,
and fast scheduling of UDT connections.

Supports multi-core processing, buffer auto-
sizing, rendezvous connection setup, etc.

Reference
UDT web site: http://udt.sourceforge.net

Internet Draft: Yunhong Gu, Robert L. Grossman, UDT: A high
performance data transfer protocol, draft-gg-udt-02.txt

Paper: Yunhong Gu and Robert L. Grossman, UDT: UDP-based
Data Transfer for High-Speed Wide Area Networks, Computer
Networks (Elsevier). Volume 51, Issue 7. May 2007

Application/Protocol Buffer

Loss List

sender

UDP Connection

DATA Seq. No | User Data

Control ACK2 | ACK Seq

Control ACK | RTT | BW | CW | ACK seq.
NAK | loss list

Application Buffer

Protocol Buffer

receiver

Loss List

Earth data in
Chicago

Earth data in
Amsterdam

UDT Architecture
UDT is an application level transport protocol over UDP. It is duplex. Each UDT entity has both a
sender and a receiver. Two UDT entities communicate through a pair of UDP ports.

UDT uses packet-based sequencing and timer-based selective acknowledgement. ACK is sent every
SYN and NAK is sent once a packet loss event is detected.

UDT uses a hybrid rate-window congestion control. Rate control is triggered every SYN, whereas
window control is triggered every ACK.

Symbols and Abbreviations
ACK: Acknowledgement
NAK: Negative Acknowledgement (loss report)
AS: Packet Arrival Speed (in packets/s)

R: Packet Sending Rate (in packets/s)
W: Congestion Window Size (in packets)
B: Estimated Bandwidth (in bits/s)

SYN: Synchronization Time. A UDT constant time that is 0.01 seconds.
RTT: Round Trip Time
MSS: Maximum Segment Size (in bytes)

Bandwidth Estimation
UDT uses receiver based packet pairs (RBPP)
to estimate link capacity L. Suppose the
current sending rate is C, then

if C is less than the last decreased sending
rate
 B = L – C
else
 B = min {L-C, L/9}

De-Synchronization
A randomization method is used to remove the negative impact of loss
synchronization. It also avoids drastic changes in the sending rate.

10-2 10-1 100 101 102 103
0.8

0.85

0.9

0.95

1

RTT (ms)

F
a
i
r
n
e
s
s

I
n
d
e
x

UDT
TCP

10-2 10-1 100 101 102 103
0

0.2

0.4

0.6

0.8

RTT (ms)

S
t
a
b
i
l
i
t
y

I
n
d
e
x

UDT
TCP

100 101 102 103
0.9

0.92

0.94

0.96

0.98

1

RTT (ms)

R
T
T

F
a
i
r
n
e
s
s

Stability Index of UDT and TCP: smaller value
is more stable

Jain’s fairness index of UDT and TCP

UDT’s RTT fairness: values are the throughput
ratio of two flows, one has a fixed RTT of 1ms,
the other ranges its RTT from 1ms to 1000ms.

10-2 10-1 100 101 102 103
0

0.2
0.4
0.6
0.8

1
1.2
1.4

RTT (ms)

T
C
P

F
r
i
e
n
d
l
i
n
e
s
s

I
n
d
e
x

UDT’s TCP friendliness index: values are
mean throughout of 10 TCP flows with 5 other
UDT flows vs. with 5 other TCP flows.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Time (s)

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

to Chicago, 1Gbps, 0.04ms
to Canarie, OC-12, 16ms
to Amsterdam, 1Gbps, 110ms

UDT’s efficiency in real networks

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

0 10 20 30 40 50 60 70 80 90 100
320

322

324

326

328

330
Time (s)

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

UDT fairness in real networks: 3 UDT flows in
real networks with different RTTs (0.04ms,
16ms, 110ms) and bottlenecks (OC12, 1Gb/s,
1Gb/s)

time

congestion epochs

NAKs
M=5, N=2

decreases

* MSS = 1500 bytes

Breaking the Data Transfer Bottleneck

