

Abstract— In this paper, we introduce a new class of AIMD

algorithms in which the size of the additive increases will
decrease as the sending rate of the algorithm increases. We
call these algorithms decreasing AIMD algorithms or DAIMD
algorithms. We show that DAIMD algorithms are efficient,
stable and fair. A special case of a DAIMD algorithm is
provided by the UDT algorithm, which has been used for a
variety of grid-based data intensive applications. UDT satisfies
max-min fairness if all concurrent flows have the same
bottleneck capacities; otherwise, the unfairness will be lower
bounded. It can expand to use from 0 to 90% of available
bandwidth in a given fixed time interval. We use both
simulations and experiments to examine these characteristics
(i.e., fairness, efficiency, and stability).

Index Terms—UDT, congestion control, transport protocol,
grid networking.

I. INTRODUCTION
NE of the research objectives of grid networking is to
design a new congestion control algorithm that is

highly scalable to networks with high bandwidth-delay
product (BDP). The original TCP algorithm [7] and its
current most popular version (TCP NewReno) have notably
poor efficiency and fairness in high BDP environments [15].
Researchers have presented a series of TCP improvements,
including Scalable TCP [5], HighSpeed TCP [4], Bic TCP
[3], and FAST TCP [2]. These new congestion control
algorithms more or less improve the efficiency of standard
TCP (TCP NewReno) and can be used in high-speed
networks. Katabi, et al. [6] proposed a different solution for
future high BDP networks by providing explicit information
from routers, such as the number of concurrent flows and the
available bandwidth.

In our previous work [14, 27, 28, 29], we have introduced
a new application level data transport protocols SABUL
(Simple Available Bandwidth Utilization Library) and its
successor UDT (UDP-based Data Transfer) and provided
some simulation and experimental results. We are

This work was supported in part by the National Science Foundation under

grants number 0129609 and 9977868.
The authors are with the Laboratory for Advanced Computing, University

of Illinois at Chicago. ADDR: 700 SEO, MC 249, 851 S Morgan St, Chicago,
IL 60607. EMAIL: ygu@cs.uic.edu, xwhong@lac.uic.edu,
grossman@uic.edu. Robert Grossman is also with Open Data Partners.

continuing the work and present in this paper a detailed
analysis of the rate-based congestion control algorithm used
in UDT.

We generalize a type of rate-based AIMD (additive
increase multiplicative decrease) algorithm, named
DAIMD, whose increments are decreasing functions of the
current sending rates. The first "D" in DAIMD indicates that
the additive parameter is decreasing. We show that this type
of control algorithm is fair and can be efficient if the
parameter is properly tuned.

UDT uses a rate control algorithm by specifying the
increment function of DAIMD. It also specifies a constant
rate control interval and introduces a supportive
window-based flow control mechanism. We use experiments
and simulation to examine the issues of efficiency, fairness,
and stability. In addition, we will also describe the automatic
parameter tuning and the impact of parameter estimation
error.

The rest of this paper is organized as follows. Section 2
describes the generalized DAIMD algorithm. Section 3
briefly reviews the UDT control algorithm and models its
performance. Section 4 analyzes the fairness equilibrium of
UDT. Section 5 evaluates the TCP friendliness of UDT.
Section 6 discusses the impact of network delay on the
performance of UDT. Section 7 discusses how to estimate
the link capacity parameter and the impact of estimation
error. Section 8 lists some related work. Section 9 concludes
this paper.

II. DECREASING AIMD RATE CONTROL ALGORITHM
We consider a general class of the following AIMD rate

control algorithm:
For every rate control interval, if there is no negative

feedback from the receiver (loss, increasing delay, etc.), but
there are positive feedbacks (acknowledgements), then the
packet-sending rate (x) is increased by α(x).

)(xxx α+← (1)
α(x) is non-increasing and it approaches 0 as x increases,

i.e., 0)(lim =+∞>− xx α .
For any negative feedback, the sending rate is decreased

by a constant factor β (0 < β <1):
xx ⋅−←)1(β (2)

An Analysis of AIMD Algorithm with
Decreasing Increases

Yunhong Gu, Xinwei Hong, and Robert L. Grossman

O

Note that formula (1) is based on a fixed control interval,
e.g., the network round trip time (RTT). This is different
from TCP control, in which every acknowledgement triggers
an increase.

By varying α(x), we can get a class of rate control

algorithm that we name the DAIMD algorithm, because the
additive parameter is decreasing.

If we use the rate control interval as a unit of time, then

from time t to t+1, the increase to the sending rate from (1)
is:

))(()()1(txtxtx α+=+
the decrease from (2) is:

)()1()1(txtx n ⋅−=+ β
where n is the number of negative feedbacks.
Thus, the net change (contributed by both the increase and

the decrease) of the sending rate x is approximated by:

∑
−

=

⋅−−⋅−⋅

=−+
)(

1

)()))1(1()(())(()0(

)()1(
Dtx

i

i txiPtxP

txtx

βα
 (3)

where P(i) is the probability that i packets are lost during
the period of (t, t+1), and D is the network round trip delay.
In equation (3), x(t-D) is the number of packets that can be
fed back at period (t, t+1), and))1(1()(iiP β−−⋅ means the
possible decrease when i packets are lost.

To simplify the analysis, we assume that the loss rate p(t)
is very small and there is, at most, one negative feedback
during one unit of time (P(0) + P(1) = 1).

)()(1))(1()0()(DtxtptpP Dtx −⋅−≈−= −
)()()0(1)1(DtxtpPP −⋅=−=

In addition, at the stable state, the difference between x(t)
and x(t-D) is small and we assume x(t) = x(t-D). (The UDT
flow control limits the difference between these two values.
See Section 6 for details.) Equations (3) can be simplified as:

)()()())(())()(1(txtptxtxtptxx ⋅⋅⋅−⋅⋅−= βα& (4)
The differential function (4) can be written in the form of:

))()(')((tpxUxkx −=& (5)
where 2)()(xxxxk ⋅+⋅= βα is positive and non-decreasing
for any x (x>0)1, and

dx
xxx

xxU ∫ ⋅+⋅
= 2)(

)()(
βα

α (6)

is called the utility function [1] of the above congestion
control algorithm.

U(x) is concave because U'(x) is strictly decreasing and
hence U"(x) < 0. According to Srikant [16] (page 26,
theorem 3.4), the congestion control algorithm (5) (hence

1 Strictly speaking, k'(x) = α(x) + x α'(x) + 2βx may be less than 0, so k(x)

may not be strictly non-decreasing. However, because α(x) is non-increasing
and it is infinitely close to 0, there exists a const c, such that k'(x) > 0 for any x
(x>c). Therefore, we can construct a new variable: y = x - c, and k(y) is
non-decreasing for any y (y>0). We can replace x using y in formula (4) - (6).

the DAIMD algorithm) is globally asymptotically stable and
will converge to an equilibrium.

We further show that the equilibrium of the DAIMD
algorithm described above satisfies max-min fairness. We
use Jain's fairness index (7) to evaluate the max-min fairness
among multiple flows.

()
∑
∑= 2

2

i

i

xn

x
FI (7)

where n is the number of concurrent flows and xi is the
sending rate of the ith flow at equilibrium. FI is a value
between 0 and 1, and FI = 1 is perfectly fair. Following the
methods used in [9], it can be easily seen that a decrease of x
according to (2) will not affect the value of FI, but an
increase of x according to (1) increases FI.

Fig. 1 illustrates the increase function in TCP Reno,

Scalable TCP, HighSpeed TCP, and the DAIMD algorithm.
If α(x)≡α, DAIMD turns into AIMD.

There is one important difference between DAIMD and
some TCP variants that use loss as a congestion signal: as
the window size becomes larger, both Scalable TCP and
HighSpeed TCP increase faster, whereas the increase of Bic
TCP may be independent of the absolute sending rate but it is
determined by the distance between the current sending rate
and a target rate.

In fact, the increment of an XCP flow may decrease as its
sending rate increases, depending on the entering or leaving
of coexisting flows, because XCP uses available bandwidth
to determine the overall increment. If there is no flow enters
or leaves, this is always true.

A detailed description of other AIMD algorithms and
XCP can be found in Section 8.

0 x

α(x)

TCP Reno (AIMD)

Scalable TCP

HighSpeed TCP

DAIMD

Figure 1: Function of increase parameter of DAIMD and several TCP variants.

In addition to stability and fairness, the function of α(x)

has to be large around α(0) to be efficient and it has to
decrease quickly to reduce oscillations. An important special
case is provided by an α(x) of the following form (Fig. 2).

x0

α(x)

Figure 2. A piecewise α(x) with breakpoints.

The first stage in the piecewise function in Fig. 2 decides

how quickly a DAIMD flow can probe the available
bandwidth at the beginning, and the length of the stage
determines its aggressiveness. The longer the stage is, the
more aggressive it will be. Each later stage has a smaller
increment as the flow approaches available bandwidth. This
will reduce the oscillations at the equilibrium.

Specifically, to achieve efficiency, the increment at each
stage should be proportional to the available bandwidth
(similar to the mechanism of the XCP efficiency controller
[6]).

UDT adopts this efficiency idea and specifies a piecewise
a(x) that is related to the link capacity.

III. UDT
We first briefly review the UDT congestion control

mechanism. In UDT, a periodical timer triggers a sending
event, and a data packet is sent out if and only if the number
of unacknowledged packets does not exceed a congestion
window.

The period of the sending timer is updated by rate control
and the congestion window size is updated by the flow
control, respectively.

The rate control algorithm is the major mechanism in
UDT and in this section we only model the UDT throughput
according to the rate control. We will describe flow control
in Section 6.

The UDT rate control directly tunes the packet-sending

period (T), which indirectly determines the packet-sending
rate (x):

1=× xT
We therefore can write the rate control formula in the

form of the sending rate.
The fixed rate control interval of UDT is SYN, which is

0.01 seconds.
UDT rate control is a special DAIMD algorithm by

specifying a(x) as:

SYNS
x xCL 1150010)())(log(⋅×= −− τα (8)

In formula (8), x has the unit of packets/second. L is the
link capacity measured by bits/second. S is the UDT packet
size (in terms of IP payload) in bytes. C(x) is a function that
converts the unit of the current sending rate x from
packets/second to bits/second (C(x) = x * S * 8). τ is a
protocol parameter, which is 9 in the current protocol
specification.

The factor of (1500/S) in function (8) is to balance the
impact of flows with different packet sizes. UDT treats 1500
bytes as a standard packet size.

Due to the ceiling function in (8), the UDT congestion

control has multiple stages, as shown in Fig. 3. UDT
increases its sending rate quickly at the beginning and slows
down as it is approaching the link capacity. In addition,
every stage has the same time span, except for the first stage,
if L is not an integer power of 10.

To simplify, we suppose S = 1500 and use packets/SYN as
the time unit of x(t). Equation (8) can be rewritten as

 τα −−=))(log(10)(xCLx (9)

Time

Se
nd

in
g

R
at

e

L

f0(α0, p)

f1(α1, p)

f2(α2, p)
f3(α3, p)

Figure 3. Sending rate changes over time. This is the situation when there is no
loss in the system; otherwise there will be oscillations in the sending rate.

Thus, UDT implements a piecewise a(x) and according to

Section 2, it is stable and fair (given that the value of L is the
same for all flows. We will discuss this further in Section 4).
We now discuss its efficiency characteristic.

Suppose in stage k (k = 0, 1, 2, …), the throughput
function is fk, the increase parameter is αk, and the loss rate
is p. Let e be an integer that satisfies 10e-1 < L ≤ 10e.

According to the rate differential function (4), the
equilibrium solution (0=x&) of UDT for any stage k (xk*) is:

p

p
x

k

k
kkk

⋅
≈

++−=

β
α

βααα
β

4
2
1* 2

 (10)

The approximation is due to the fact that ak is very small
compared to 1/p. The result of (10) shows that at each stage
UDT acts as an AIMD control (the response function is

proportional to p-0.5), and its increase parameter decreases as
the sending rate increases, whereas its decrease factor is a
constant.

The increase parameter of each stage decreases by 1/10,

and α0 = α(0), therefore,
 ταα −+−− =⋅= Lkk

k
log

0 1010 (11)
Recall that

9=τ ,
and UDT defines the decrease factor as2

9/1=β
We finally reach

2
9

103*
−+−

⋅=
ek

k p
x (12)

Note that xk has units that are measured by packets/SYN.
Suppose Xk is the throughput function whose units are
bits/second, then

2
1

**

1016.3

815001

+−

⋅⋅=

⋅⋅⋅⋅=

ke

kk

pSYN

Sx
SSYN

X
 (13)

Once the sending rate increases to a certain value such
that (L-C) falls into the next class of the power of 10, i.e.,
L-C<10e-k-1, the UDT congestion control enters the next
stage. However, as k increases, the throughput at stable state
(xk*) decreases, and k will stop increasing when

12
1

101016.3 −−
+−

≥⋅⋅− ke
ke

pSYN
L

The minimum k that satisfies the above condition is the
stable stage of a UDT flow. (The operator [op]+ is equivalent
to max{op, 0}.)

pSYN
d

dLdek

⋅
=

 −+−−=

+

18

log21* 2

 (14)

When p = 0, equation (3) turns into:

kkk txtx α+=+)()1((15)
This linear increase shows that each stage will need a

fixed time interval to increase to the next stage. Specifically,
there is a fixed time interval for a UDT flow to increase from
0 to 90% of the link capacity.

Suppose at the end of the first stage, UDT reaches rate R0
(LR 9.00 ≤), then to reach 0.9L it takes

81500
)(9

81500
9.0

0

0

1

0

0

0

×
⋅−=

×
⋅

 −+ SYNRLSYNRLR
ααα

2 We actually increase the packet-sending period by 1/8 in UDT, and it is a

decreases factor of 1/9 on the packet sending rate.

Since L-R0=10e-1, α0 = 10e-9, and SYN = 0.01, the above
formula yields 750 SYN, which is 7.5 seconds.

In contrast, at 200ms RTT, TCP needs 28 minutes to
recover from a single loss to 1Gbits/s, or 4 hours 43 minutes
to recover to 10Gbits/s, etc.

IV. FAIRNESS OF UDT

A. Max-min Fairness
If all concurrent flows have the same L, then the

increment function of each flow will satisfy the condition of
the α(x) in the DAIMD algorithm. Therefore, in this
situation UDT satisfies max-min fairness. In addition, this
fairness is independent of RTT, since UDT uses a constant
rate control interval.

We now discuss the situation when two flows F1 and F2

have different bottleneck link capacities. Suppose the
bottleneck link capacities for F1 and F2 are L1 and L2

(L1>L2), respectively. The equilibrium bandwidth allocation
is (x1, x2). The following condition should stand:

L1 -x1 ≥ L2 - x2 (16)
Otherwise F2 has smaller decrements but has higher

increments so that (x1, x2) cannot be the equilibrium. If the
loss rate is small and

x1 + x2 ≈ L1 (17)
then according to the equation (16) and (17) we can

conclude that F2 will take at least half of L2 (x2≥L2/2).
Fig. 4 illustrates the details of the competition between the

two flows. Suppose at equilibrium, the two flows stay at
stage k1 and k2, respectively. According to (9), αk1≥αk2,
otherwise F2 will occupy more bandwidth, which is
impossible. If k2 ≥ 2, then F2 has already occupied more than
90% of L2, so it is approximately fair. If k2 = 1, then either F1
stays at the same stage such that αk1=αk2, which means the
two flows share the bandwidth equally, or it stays below (L1 -
L2), which means all the bandwidth of L2 is left for F2.

Time

Se
nd

in
g

R
at

e

L1

fn+1(αn+1, p)

fn+2(αn+2, p)
fn+3(αn+3, p)

L1-L2

Figure 4. Two UDT flows with different link capacities.

The only situation that can cause unfairness is that F2
stays at stage 2, and F1 stays at the first stage above (L1 - L2).

In this case, F2 is still more competitive than F1 and will
obtain more bandwidth of L2. Therefore, the lower bound of
the throughput of F2 is L2/2.

B. Experiment
We set up an experiment to check the fairness of UDT.

The network configuration is shown in Fig. 5. Two sites,
StarLight (Chicago) and SARA (Amsterdam), are
connected with 1 Gbits/s link. At each site, four nodes are
connected to the gateway switch through 1GigE NIC. The
RTT between the two sites is 104ms. All nodes run Linux
2.2.19 SMP on dual Intel Xeon 2.4GHz CPU.

1Gb/s, 104 ms

206.220.241.13

206.220.241.14

206.220.241.15

206.220.241.16

145.146.98.77

145.146.98.78

145 .146 .98.79

145 .146 .98.80

Figure 5. Fairness testing configuration. Four pairs of nodes share 1 Gbits/s,
104 ms RTT link.

For the four pairs of nodes, we start a UDT flow every 100

seconds, and stop each of them in the reverse order every 100
seconds, as depicted in Fig. 6.

Flow 1

Flow 2

Flow 3

Flow 4

0 100 200 300 400 500 600 700

Figure 6. Flow start and stop configuration.

The results are shown in Fig. 7 and Table 1. Fig. 7 shows

the detailed performance of each flow and the aggregate
throughput. Table 1 lists the average throughput of each
flow, the average RTT and loss rate at each stage, the
efficiency index (EI), the fairness index (FI), and the
stability index (SI).

Here the efficiency index is defined as the aggregate
throughput, the fairness index is defined as Jain's fairness
index (7), and the stability index uses the one defined by Jin,
et al. [2].

()∑ ∑
= =

−

−
=

n

i

m

k
ii

i

xkx
mxn

SI
1 1

2)(
1

111 (18)

where n is the number of concurrent flows, m is the
number of samples of each flow, xi(k) is the sending rate of
kth sample. In this experiment n = 4 and m = 100 for each
stage.

All stages achieve good bandwidth utilization. The
maximum possible bandwidth is about 940Mbits/s on the
link, measured by other benchmark software. The fairness
among concurrent UDT flows is very close to 1. The stability

index reflects the oscillations of sending rates and a smaller
value means the sending rate is more stable. Furthermore,
UDT causes little increase in the RTT (107 ms vs. 104 ms)
and a very small loss rate.

0 100 200 300 400 500 600 700
0

200

300

450

900

1000

Time (s)

T
hr

o
ug

h
ou

t (
M

bi
ts

/s
)

Figure 7. UDT Fairness. This figure shows 4 UDT flows shares 1 Gbits/s, 104
ms RTT link. The highest line is the aggregate throughput.

TABLE 1.

 CONCURRENT UDT FLOW EXPERIMENT RESULTS

Time
(sec)

1 -
100

101 -
200

201 -
300

301 -
400

401 -
500

501 -
600

601 -
700

Flow1 902 466 313 215 301 452 885
Flow2 446 308 216 310 452
Flow3 302 202 307
Flow4 197
RTT 106 106 106 106 107 105 105
Loss 0 10-6 10-4 10-3 10-3 0 10-6
EI 902 912 923 830 918 904 885
FI 1 .999 .999 .998 .999 1 1
SI 0.11 0.11 0.08 0.16 0.04 0.02 0.04

C. Simulation
We use a simulation3 to check the fairness characteristic

for flows having different link capacities. The simulation
topology is shown in Fig. 8. The link capacity of AB is 200
Mbits/s, and that of AC is y (y < 200).

Two flows are started at the same time and each sends
data from A to B and C, respectively.

Fig. 8. UDT performance in multi-bottleneck topology network. In this
topology, the end-to-end capacity of AB is 200Mbps, whereas AC is y (y <
200). DropTail queue is used in the network.

The results are shown in Table 2. In all cases flow AC
obtained at least 90% of its fair share.

3 All simulations in this paper are performed on NS-2 simulator.

A

y

200
200

B

C

TABLE 2
UDT PERFORMANCE (IN MBITS/S) OF FIG. 8

y 0.1 1 10 20 40 60

AB 198.8 189.2 180.1 170.9 152.5 137.6
AC 0.098 0.979 9.955 19.88 39.46 57.70

y 80 100 120 140 160 180
AB 108.4 104.6 100.8 101.3 100.7 100.3
AC 73.49 92.42 98.47 98.04 98.65 99.00

We set up another simulation to check RTT fairness. Fig.

9 is the network configuration of this simulation: five flows
share a 100 Mbits/s bottleneck, with each having RTT of 10
µs, 100 µs, 1 ms, 10 ms, and 100 ms.

100Mbits/s

10µs

100µs

1ms

10ms

100ms

Figure 9. RTT fairness simulation topology. Five flows share a 100 Mbits/s
link, with each having RTT from 10 µs to 100 ms.

The result can be seen in Fig. 10. The average throughput

for the five flows is 25.37, 19.93, 20.17, 19.70, and 13.72
Mbits/s, respectively. The aggregate throughput is 98.89
Mbits/s, the Jain's fairness index is 0.966, and the stability
index is 0.19.

0
200 400

600
800

0.01
0.1

1
10

100

0

20

40

60

Time (s)RTT (ms)

T
hr
o
u
gh
pu
t
(M
bi
ts
/s
)

Figure 10. RTT fairness of UDT. The figure shows the throughputs of 5
concurrent UDT flows with different RTTs.

Fig. 11. UDT Performance in complex topology network. The topology
consists of 6 nodes, and the capacity is noted above each link. The RTT
between any 2 adjacent nodes is 10ms. There are 6 flows in the network and are
noted as arrowed lines in the figure.

TABLE 3
UDT PERFORMANCE (IN MBITS/S) OF FIG. 11.

Flow ID 1 2 3 4 5 6

 89.3 90.0 5.18 41.7 50.8 4.78

A more complex simulation is set up as a parking lot
topology (Fig. 11). Six flows pass through a 5-node network
with different bottleneck capacities. The result is listed in
Table 3, where we can see that the max-min fairness is still
observed.

V. TCP FRIENDLINESS
Because UDT uses a fixed rate control interval, when it

competes with TCP, the network RTT will play an important
role in the bandwidth sharing. Meanwhile, the increase
parameter is decided by the parameter of link capacity L,
which also affects the TCP friendliness.

If SYN = RTT, UDT increases no less than 1 packet per
RTT (α0 >= 1) only at L > 100Mbps; If SYN < RTT, UDT
increases at a lower frequency than TCP.

Specifically, according to (12) (note that it has to be
converted to use the units of packets/second) and the simple
version of the TCP throughput model (RTTp //5.1) [21,
22], the relationship between UDT and TCP (TF) can be
written in the equation (19):

610

5.111013

2
9

2
9

⋅⋅=

⋅

⋅⋅=

−+−

−+−

ek

ek

SYN
RTT

pRTTpSYN
TF

 (19)

UDT will obtain less bandwidth than coexisting TCP if
TF≤1. The first stage of UDT is the most aggressive one, so
k=0 yields a sufficient condition for TCP friendliness, i.e.,
any UDT flow that satisfies the following condition must be
friendly to TCP:

1610 2
9

≤⋅⋅
−e

SYN
RTT

Since 10e-1 < L ≤ 10e, the above equation is satisfied if
6/10822 ⋅≤⋅ SYNLRTT (20)

Condition (20) is sufficient to guarantee that UDT is less
aggressive than TCP and it shows that UDT is very friendly
to TCP in low BDP environments.

Fig. 14 is the simulation result of UDT/TCP bandwidth

allocation under different bandwidth and RTT. The figure
shows the ratio between UDT throughput and TCP
throughput. As the RTT increases, UDT obtain more
bandwidth; however, at 1 Gbits/s and 100ms RTT, a UDT
flow still only obtains about 5 times the bandwidth as that of
the coexisting TCP flow.

We noticed that at very low link capacity, UDT may take
more bandwidth than in high link capacity under the same
RTT, this is because in such environments the queue size is
relatively large (much larger than BDP) and it can have a
negative impact on the TCP bursting flow [17].

100100 100

50 10

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
3
0

1

2

3

4

5

6

RTT (ms)Bandwidth (Mbits/s)

R
a

tio
 (U

D
T

/T
C

P
)

Figure 14: Bandwidth allocation between UDT and TCP. This is the
simulation of one UDT flow and one TCP flow under different bandwidth and
RTT. This figure shows the ratio between the throughputs of the UDT flow
verses the throughput of the TCP flows.

VI. IMPACT OF NETWORK DELAY ON UDT PERFORMANCE
Our analysis in the previous sections has simplified the

impact of the network delay. As the RTT increases, the
increment per RTT may also become larger. This may cause
a stability concern because large increments can cause
oscillations (because the congestion, if caused by the rate
increase, will need one RTT to feed back).

The UDT window-based flow control is to prevent such
stability problems from occurring. The window control
limits the number of unacknowledged packets (w). It is done
at the receiver side and the window size is sent back in
acknowledgements. Every SYN time, the window size is
updated by:

)1()(λλ −×+×+×= RTTSYNASww (21)
where w has the unit of packets, AS is the packet arrival

speed since last time w is updated (w will not be updated if no
packets arrive or there are too few packets to estimate the
arrival speed), and λ (0 < λ < 1) is a factor for the moving
average.

The acknowledgment feeds back the minimum value
between w and the available receiver buffer size, but we
assume there is always a large enough receiving buffer and
the feedback is always w.

According to the window control (21), a UDT sender can
send out no more packets than (1+ SYN/RTT) of that which
the receiver was able to handle one RTT ago4. (However, the
packet-sending period may still be decreasing, independent
of the number of sent packets.)

This indicates that RTT does have a slightly negative
impact on the performance of UDT by delaying the increase

4 UDT Flow control simulates the self-clocking mechanism of TCP. It

prevents the sending rate from exceeding the receiving rate.

effect: the increase on the sending rate cannot have an effect
immediately. It must wait until the next RTT. (In Fig. 10,
flows with longer RTT have lower throughputs.) This
eliminates the stability problem of using constant rate
control intervals.

We set up 10 UDT flows on a similar network topology as
Fig. 5 but with each side having 10 nodes. The route has a
fixed 2000-packet DropTail queue. We vary the RTT
between 10 microseconds (10-5 second) to 1 second, and
compute the aggregate throughput, fairness index, and
stability index.

The result is shown in Table 4. For comparison, we also
list the same experimental data for TCP in Table 5. In these
two tables, EI is the efficiency index, FI is the fairness index,
and SI is the stability index, which have the same definition
as those in Table 1. At lower RTT, both UDT and TCP work
well; however, as the RTT increases, UDT is more efficient
and fair than TCP. It still obtains an acceptable
performance, even at 1 second RTT.

TABLE 4

UDT PERFORMANCE AGAINST RTT
This table lists the performance of 10 UDT flows sharing a single
1 Gbits/s link. In this table, RTT uses the unit of seconds, EI is
the efficiency index (i.e., aggregate throughput), FI is the fairness
index, and SI is the stability index.

RTT 10-5 10-4 10-3 10-2 10-1 1
EI 998 997 997 989 929 719
FI .999 .999 .999 .999 .997 .993
SI 0.06 0.07 0.09 0.11 0.23 0.64

TABLE 5

IMPACT OF RTT ON TCP
This table lists the performance of 10 TCP flows sharing a single
1 Gbits/s link. In this table, RTT uses the unit of seconds, EI is
the efficiency index (i.e., aggregate throughput), FI is the fairness
index, and SI is the stability index.

RTT 10-5 10-4 10-3 10-2 10-1 1
EI 996 994 998 997 839 145
FI .999 .999 .999 .997 .681 .537
SI 0.08 0.09 0.07 0.07 0.30 0.28

VII. ESTIMATING LINK CAPACITY "L"
The parameters of link capacity L can be manually

configured by applications if the network topology is known
or it can be set up to be the upper limit of the sending rate of
a certain UDT flow. In this section, we discuss how to
estimate L automatically.

UDT uses receiver-based packet pairs to estimate the link
capacity L. The UDT sender sends out a packet pair (by
omitting the inter-packet waiting time) every 16 data
packets. The receiver records the inter-arrival time of each
packet pair and uses a median filter (more complex

mechanisms can be found in [23, 24]) on them to compute
link capacity.

There are two major concerns in using packet pairs to
estimate link capacity. One is the impact of cross traffic. The
existence of cross traffic can cause the capacity be under
estimated. Dovrolis, et al. point out that using packet pairs
leads to a value referred to as Asymptotic Dispersion Rate
[10], which is a value between available bandwidth and link
capacity.

The other concern is the NIC interrupt coalescence. High
speed NIC often has the functionality to interrupt
coalescence to avoid too frequent interrupts. This can cause
multiple packet arrivals to be notified by one single interrupt
and hence the link capacity may be overestimated. This error
can be eliminated by using the average inter-arrival time of
multiple packet pairs. Prasad, et al. have a detailed discuss
about the impact of interrupt coalescence on bandwidth
measurement in [26].

We have seen that UDT may overestimate the capacity
when there is only one flow in the network, whereas it tends
to underestimate the capacity when there are multiple flows.

For a single flow, capacity estimation error only affects
the convergence time. For multiple flows, it can also affect
the fairness. Note that if all flows have the same estimation
error, they can still reach fairness.

Consider a simple situation where we suppose L=10e, L' is

the estimated value, and the estimation error is ε, i.e., L' =
(1+ ε)*L. We can safely assume that -0.9 < ε < 9, because
such a large error is very unlikely and we can even use the
sending rate history record to eliminate certain extreme
error5.

When competing with a flow with accurate L estimation,
the bandwidth sharing between the two flows will be at most:

ε
ε

910211
910211

−+
++ if (0 < ε < 1)

10 if (1 ≤ ε <9)
1 if (-0.5 < ε < 0)

)1/(εε +− if (-0.9 < ε ≤ 0.5)
We omit the detailed deduction process for these results

and only give the following intuitive analysis. Suppose flow
1 has the right estimation L and flow 2 has the error
estimation L'. For the first case, before flow 2 reaches L' - L,
it increases 10 (according to equation (10)) faster than flow
1, after which they have the same increments to compete for
the rest of the bandwidth. In the second case, flow 2 is
always 10 faster than flow 1. In the third case, the two flows
will reach equal shares because they have the same

5 For example, if a UDT flow does not reaches 100 Mbits/s for some time,

say, the last 100 RTTs, but the estimation result is 1 Gbits/s, such a result is
either wrong or there are other limitations such that the flow will not reach 1
Gbits/s in the next several RTTs. At this case, UDT can conclude that this
estimation is invalid.

increments. Finally, if L' < L/2, the throughput of flow 2 will
be limited by L'.

As a simple example, if two flows share one 100 Mbits/s
link, flow 1 measures the link capacity as 101 Mbits/s and
flow 2 measures 99 Mbits/s, then the two flows will still
share the bandwidth almost equally. After flow 1 reaches 1
Mbits/s, it will enter the same stage as flow 2, and both of the
two flows will have the same increments and decrements.

VIII. RELATED WORK
Recently there have been several other new end-to-end

congestion control algorithms proposed for grid networks.
They can be roughly classified into three types.

The first type is to modify TCP by using large increase
parameters (especially at large windows). Scalable TCP,
High Speed TCP, and Bic TCP belong to this category. They
all use binary indication of congestion and either increase or
decrease the sending rate (congestion window size).
Protocols in this category differ from each other by using
different increase/decrease functions.

Scalable TCP [5] uses an MIMD approach to increase the
increase parameter in proportion to the current window size:
α(x) = 0.1x. Its decrease factor is a constant of 1/8. Scalable
TCP does not satisfy intra-protocol fairness due to its MIMD
nature.

HighSpeed TCP [4] redefines the response function of
TCP, according to which it computes a series of increase and
decrease parameters. Its increase parameter is an increasing
function of the current window size, whereas the decrease
factor is a decreasing function of the window size.

Bic TCP [3] introduces a binary increase stage and it
approximately approaches to AIMD(32, 1/8) at large
window size.

Table 6 lists the increase/decrease function and response
function of TCP Reno, Scalable TCP, High Speed TCP, Bic
TCP, and UDT. Specifically, the Bic TCP parameter we use
in this table is (32, 1/8, 0.01), and target_win is the window
size at the midway between the current window size and the
maximum window size, which is approximately the window
size when last loss occurs or is infinitely large if the current
window size exceeds the old maximum window size. The
response function of Bic TCP is according to equation (1.4)
in [3]. In Table 6, p is the loss rate, w is the congestion
window size, x is the sending rate, and w = x*RTT. The
symbols in the UDT formula have the same meanings as
before.

The second type can be seen in FAST TCP [2], which uses

queuing delay as a multi-bit congestion flag to tune the
congestion window size with an equation-based method.
FAST TCP extends TCP Vegas. The analysis of FAST and
Vegas can be found in [2, 20], and more general analysis on
delay-based approaches can be found in [19, 25].

According to [2], FAST TCP tunes the congestion
window size every two RTTs, according to the ratio of
BaseRTT/RTT, where BaseRTT is the minimum RTT
observed so far.

However, on each packet loss event, FAST still decrease s
its window size by 1/8.

The FAST algorithm converges to weighted proportional
fairness [2].

The third type of congestion control algorithm for high

BDP networks is to use explicit router feedback. XCP [6] is
such a window-based protocol. In XCP, each router
computes an increment or a decrement, which can be
updated as it passes a successive router. The increment and
decrement information is carried back by
acknowledgements.

At each router, the XCP efficiency controller computes
the aggregate feedback according to the available bandwidth
and the persistent queue size.

The XCP fairness controller then distributes the aggregate
feedback to all flows. If the aggregate feedback is positive,
all the flows will have the same increase; if it is negative,
each flow decreases in proportion to its own sending rate.
The objective of this AIMD fairness controller is to make
XCP satisfy max-min fairness.

In particular, XCP uses a control interval of the average
RTTs of all flows.

The DAIMD algorithm can be classified into the first

type. It uses a decreasing function of the increase parameter,
and a constant decease parameter. However, the difference is
that DAIMD tunes the sending rate based on time interval,
which is similar to the second and the third approaches.
UDT uses a constant control interval.

A lot of previous work has focused on the analysis of

distributed congestion control algorithms. For example,
Low's duality model has been used in analyzing TCP and
AQM [1]. Kelly introduced a series of analysis on rate
control and proportional fairness [8, 18]. Ott used a fluid
model to describe the binary-based congestion control [32].
Bansal and Balakrishnan analyzed a group of binomial

algorithms [30]. Gorinsky and Vin pointed out the
limitations of Chiu and Jain's AIMD model and provided an
extended analysis [31]. Srikant summarized the stability and
fairness of Internet congestion control in [16].

IX. CONCLUSION
In this paper, we described a general type of AIMD

congestion control algorithm, named DAIMD, whose
increment decreases as the sending rate increases. This is
different from other AIMD-based algorithms recently
proposed to improve the performance of TCP at high BDP
environments, which generally use large increase
parameters.

DAIMD is stable and converges to max-min fairness
equilibrium.

UDT is a special case of such algorithms. We showed that
UDT can converge to 90% of the link capacity in a fixed time
interval, independent of the network BDP. This makes UDT
very scalable and efficient. UDT is fair when multiple flows
have the same bottleneck capacities, and the unfairness is
lower bounded when flows have different capacities. It is
friendly to TCP in low BDP networks.

Because UDT uses a constant rate control interval
independent of RTT, we also discussed the impact of
network delay on the performance and used simulations to
show that UDT can still work well even if the RTT is very
large.

In addition, we described how to estimate the parameter of
link capacity in UDT and discussed the impact of estimation
error.

Finally, we listed some recent progress on congestion
control algorithms in dealing with the high BDP
environments of grid networks, and compared their
mechanisms to DAIMD.

REFERENCES
[1] Steven H. Low, "A duality model of TCP and queue management

algorithms," IEEE/ACM Transactions on Networking (TON), Volume
11, Issue 4, (August 2003), Pages: 525 - 536.

[2] Cheng Jin, David X. Wei and Steven H. Low, "FAST TCP: motivation,
architecture, algorithms, performance," in IEEE Infocom, March 2004.

TABLE 6
INCREASE/DECREASE AND RESPONSE FUNCTIONS OF RENO/SCALABLE/HIGHSPEED/BIC TCP

 Increase α Decrease β Response Function
TCP Reno 1 0.5 5.022.1 −⋅ p

Scalable TCP 0.1w 0.125 18.0 −⋅ p

HighSpeed TCP))(2/()(1578.0 8024.0 www ββ −⋅⋅ 6892.0ln0520.0 +⋅− w 835.012.0 −⋅ p

Bic TCP min(target_win - w, 32) 0.125 5.065.24 −⋅ p

UDT 9))(log(10 −− xCL 0.111

5.02
9log

103 −
−+−

⋅⋅ p
Lk

[3] Lisong Xu, Khaled Harfoush, and Injong Rhee, "Binary Increase

Congestion Control for Fast Long-Distance Networks", in IEEE
Infocom, March 2004.

[4] Sally Floyd, "HighSpeed TCP for Large Congestion Windows," RFC
3649, Experimental, December 2003.

[5] Tom Kelly, "Scalable TCP: Improving Performance in Highspeed Wide
Area Networks," Computer Communications Review, April 2003.

[6] Dina Katabi, Mark Handley, and Chalrie Rohrs, "Congestion Control for
High Bandwidth-Delay Product Networks," in the proceedings on ACM
Sigcomm 2002.

[7] Van Jacobson, Michael J. Karels, "Congestion Avoidance and Control,"
in Proceedings of the Sigcomm '88, Stanford, CA, August, 1988.

[8] Frank Kelly, "Fairness and stability of end-to-end congestion control,"
European Journal of Control, 9 (2003) 159-176.

[9] D. Chiu and R. Jain, "Analysis of the Increase/Decrease Algorithms for
Congestion Avoidance in Computer Networks," Journal of Computer
Networks and ISDN, Vol. 17, No. 1, June 1989, pp. 1-14.

[10] C. Dovrolis, P. Ramanathan, D. Moore, "What do Packet Dispersion
Techniques Measure?", in Proceedings of IEEE Infocom, April 2001.

[11] D. Loguinov and H. Radha, "End-to-End Rate-Based Congestion
Control: Convergence Properties and Scalability Analysis," IEEE/ACM
Transactions on Networking, vol. 11, no. 4, August 2003.

[12] Padhye, V. Firoiu, D. Towsley, J. Kurose, "Modeling TCP Throughput:
A Simple Model and its Empirical Validation", Proc. ACM
SIGCOMM'98 (Vancouver, CA, September 1998).

[13] Tom DeFanti, Cees de Laat, Joe Mambretti, Kees Neggers, Bill St.
Arnaud, "TransLight: a global-scale LambdaGrid for e-science",
Communications of the ACM, Volume 46, Issue 11, (November 2003),
Pages: 34 - 41.

[14] UDT, http://sourceforge.net/projects/dataspace.
[15] W. Feng and P. Tinnakornsrisuphap, "The Failure of TCP in

High-Performance Computational Grids," in Proc. of SC 2000:
High-Performance Networking and Computing Conf., November
2000.

[16] R. Srikant. "The Mathematics of Internet Congestion Control."
Birkhauser, 2004.

[17] S. Floyd and V. Jacobson, "On traffic phase effects in packet-switched
gateways," Internetworking: Research and Experience, 3:115-156,
1992.

[18] F. P. Kelly, A.K. Maulloo, and D.K.H. Tan, "Rate control in
communication networks: shadow prices, proportional fairness and
stability," Journal of the Operational Research Society, 49 (1998),
237-252.

[19] J. Martin, A. Nilsson, and I. Rhee, Delay-based congestion avoidance
for TCP. ACM/IEEE Transactions on Networks, June 2003.

[20] Steven H. Low, Larry L. Peterson, Limin Wang, "Understanding TCP
vegas: a duality model," SIGMETRICS/Performance 2001: 226-235

[21] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, "Modeling TCP
Throughput: A Simple Model and its Empirical Validation,"
Proceedings of SIGCOMM '98.

[22] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott,
"The Macroscopic Behavior of the Congestion Avoidance Algorithm",
Computer Communications Review, volume 27, number 3, July 1997.

[23] V. Paxson, "End-to-end Internet packet dynamics," in Proc. ACM
SIGCOMM, pp. 139--152, September 1997.

[24] Kevin Lai, Mary Baker, "Measuring link bandwidths using a
deterministic model of packet delay," SIGCOMM 2000: 283-294.

[25] R. Jain, "A Delay Based Approach for Congestion Avoidance in
Interconnected Heterogeneous Computer Networks," Computer
Communications Review, ACM SIGCOMM, October 1989, pp. 56-71.

[26] Ravi Prasad, Manish Jain and Constantinos Dovrolis, "Effects of
Interrupt Coalescence on Network Measurements," PAM2004, Antibes
Juan-les-Pins, France, April 19-20, 2004.

[27] Yunhong Gu and Robert L. Grossman, "SABUL: A Transport Protocol
for Grid Computing," Journal of Grid Computing, to appear.

[28] H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, Q. Zhang,
"Simple Available Bandwidth Utilization Library for High-Speed Wide
Area Networks," Journal of Supercomputing, 2004, to appear.

[29] A. Chien, T. Faber, A. Falk, J. Bannister, R. Grossman, J. Leigh,
"Transport Protocols for High Performance: Whither TCP?,"
Communications of the ACM, Volume 46, Issue 11, November, 2003,
pages 42-49.

[30] Deepak Bansal and Hari Balakrishnan, "Binomial Congestion Control
Algorithm," Proc. IEEE INFOCOM Conf., Anchorage, AK, April 2001.

[31] S. Gorinsky and H. Vin, "Extended Analysis of Binary Adjustment
Algorithms," Technical Report TR2002-39, Department of Computer
Sciences, The University of Texas at Austin, August 2002.

[32] T. J. Ott, J. H. B. Kemperman, and M. Mathis, "The stationary behavior
of ideal TCP congestion avoidance," in Proceedings of IEEE
INFOCOM'99, New York, 1999.

